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Classification of Fake News: A Comparative Study

EMANUELE SANTORO, ROHIT KAUSHIK, and SARA MERENGO

Fig. 1. Fake news word tag cloud

This research study is focused on the detection of fake news using various NLP classification methods. The data used in this study
consists of two datasets - one for training and one for testing. They include a mix of both real and fake news. Both datasets have a near
50% of distribution of real and fake news. We compared several models for this classification task, and used a Stylometry embeddings
approach as our baseline model with SVM, which reported an accuracy of 89%. As an alternative, GloVe embeddings were also created
and used with an LSTM, which resulted in 99.8% accuracy. A generic SVM with PoS tagging did not work very well, with only 49%
accuracy. A BERT classifier was also trained, which resulted in an accuracy of 94.9%.

To conclude, out of all the models compared for fake news classification, LSTM neural networks gave the best classification of real
and fake news.
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1 INTRODUCTION

While it is clear that fake news have existed since humans began communicating and sharing information [15], the
recent communications, Internet, and social media boom has facilitated the generation and spread of news both real
and false. Recognizing the peril posed by this dissemination of fake news is crucial as it has the potential to profoundly
impact our society and democratic values [5].

Finding an exact and concise definition of Fake News can be challenging, as different factors need to be taken into
consideration. [8] defines Fake News as false but verifiable news composed of false facts based on real ones, drafted in
a way to trigger an emotional load and aiming to deceive its readers and influence their opinion through an implicit
conclusion.

As AI models advance, it is now commonplace to use these increasingly powerful models to predict the authenticity
of an item. These AI models leverage the power of machine learning algorithms, natural language processing and data
analytics to examine textual content and identify patterns that indicate untruth or inaccuracy [7]. Although artificial
intelligence models have proven to be powerful tools, the current state of the art does not provide a deterministic
algorithm to determine a priori whether a news article can be classified as false or reliable, as it is difficult even for
humans to assess the truth of news [13].

The task of identifying Fake News can be described as a binary classification problem, where the goal is to classify a
given news article into one of two classes: FAKE or REAL. This goal can be achieved by analyzing the content and
metadata of news articles, including items such as title, text, author, etc. By examining these components, valuable
insights can be gained that help distinguish fake news from real news. The goal of this work is to help identify fake
news by using linguistic analysis of different news articles to train different models to a reasonable level of accuracy.

2 RELATEDWORK

In this section, we provide a literature review of existing fake news detection solutions. These approaches can be divided
into three categories: linguistic-based, social-context-based, and knowledge-based [26].

Linguistic-Based Analysis. This method refers to the analysis and accurate examination of natural language ([20],
[6],[4]). Its objective is to extract significant data, such as the language proficiency of the news creator, syntactic struc-
tures, understandability, psychological cues, and n-gram patterns [24]. These valuable insights are derived exclusively
through linguistic analysis of the news content.

Social-Context-Based. This approach analyzes the spreading patterns and the diffusion on social networks to distin-
guish misleading substances ([19],[33],[34]). The peculiarity of this investigation is to check both the integrity of news
and users’ credibility in order to generate a probabilistic graphical model capable of classifying the news.

Knowledge-Based Analysis. This approach checks the already existing human knowledge to estimate the likelihood
of news being false, using external sources to check the veracity of the claimed news ([11],[29],[32]). This approach
can be really useful when facing a specific category of news [14] where it’s easier to identify inconsistencies between
Manuscript submitted to ACM
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Attribute Real news Fake news All news
text - length 574.287 519.241 549.870

text - average word length 4.955 4.793 4.883
text - variance in word length 7.310 6.934 7.143

text - punctuation ratio 0.028 0.031 0.029
text - uppercase ratio 0.048 0.056 0.052
text - type token ratio 0.558 0.570 0.563

text - Yule’s k 98.888 94.648 97.007
title - length 11.052 13.127 11.973

title - average word length 5.445 5.439 5.443
title - variance word length 6.043 6.453 6.225
title - punctuation ratio 0.030 0.025 0.028
title - uppercase ratio 0.106 0.287 0.186

Table 1. Average attributes of real and fake articles

trusted and not-trusted sources. Nevertheless, it has some limitations when applied to predicting the truthfulness of
very recent news.

3 DATASET EXPLORATION

The dataset used for this project is the WELFake [31] dataset. It is made up of 72,134 articles, of which 35,028 are
labelled real and 37,106 are labelled false, with a split of around 48% real news and 52% fake news. For each article,
three columns are included: title, text and label. The dataset was created by merging four popular news datasets (i.e.
Kaggle, McIntire, Reuters, BuzzFeed Political) to prevent over-fitting of classifiers and to provide more text data for
better ML training.

As part of our dataset exploration, we computed the text features shown in Table 1, which will also be later used for
our baseline stylometry approach. Some of the features were computed using ’lexicalrichness’ module in Python [28]
[27].

Fig. 2. Difference between text uppercase ratio distribution between real and fake articles

Manuscript submitted to ACM
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(a) Variance in word length in text (b) Variance in word length in title

Fig. 3. Difference in variance of word length distribution between real and fake articles

We can see how some features’ averages actually show a significant difference between real and fake news, the most
notable of which is the title uppercase ratio. We can also observe in Figure 2 how even though the average for the text
uppercase ratio is closer for real and fake news, most articles with a high text uppercase ratio fall in the fake news
category. These two facts suggest not only that this is valuable information for a stylometry approach, but also that
other tools such as GloVe embeddings and BERT models should be case-sensitive.

We can also observe from Figure 3 how even though the average value for the variance of word length is similar
between real and fake news, most articles with very high variance values are fake news. By examining these instances
we can discover that their high variance in word length is typically due to short texts containing very long links.

We could be surprised by the fact that Yule’s k seems to be higher for real news than fake news, as a higher value
indicates a smaller vocabulary richness. We can however see from Figure 4 that articles with a high Yule’s k tend to be
fake news. In any case this particular feature is not always a good indicator as any text without any repeating words
scores 0, which makes the score not particularly indicative for short texts.
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Fig. 4. Difference between text Yule’s k distribution between real and fake articles

4 METHODOLOGY

4.1 General Preprocessing

The dataset was acquired as .csv file. When working with Python, the framework "pandas" [30] was used to easily
manipulate data. A general preprocessing was performed on the whole dataset in order to:

• Remove none values in all columns
• Remove rows that contain no text in the text or title column
• Remove rows in which text or title contain only non-alphanumeric characters
• Remove duplicates

The dataset contained roughly a thousand rows with at least a none value and roughly a thousand rows whose title
or text columns were either empty or made up only of non-alphanumeric characters. More significant was the share of
duplicate rows, which resulted in removing more than 8,000 rows from the dataset.

The final dataset contains then 62,549 articles of which 34,790 are labelled real and 27,759 are labelled fake, with
roughly a 55%/45% split.

4.2 Baseline: stylometry approach

As a first approach, a number of stylometry features (summed up in Table 1) were computed for each article in the
dataset. The dataset was then normalized.

An SVM [22] model fit on this data reports an accuracy of 89%, which is a fairly good result considering that this
approach is considerably simpler and less expensive in terms of training time and resources than more complex language
models. Because of its simplicity compared to other approaches this method was chosen as a baseline for our results.

4.3 Naive Bayes

Naive Bayes models are usually simple probabilistic classifiers, but can still achieve good performance on NLP tasks.
They are based on the Bayes Theorem and on the assumption of independence. Each word is treated independently and

Manuscript submitted to ACM
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a probability is assigned to it. We then calculate the probability of an article being fake for each word it contains and
combine these probabilities to obtain the overall probability of the article being fake.

Two methods were used for this approach. In the first approach, we counted the number of occurrences of each
word across the entire dataset [1]. In the second approach, we assigned a weight to each word based on TF-IDF (Term
Frequency - Inverse Document Frequency) [3]. Table 2 displays the top 10 most common words and the top 10 words
with the highest weight.

Word Occurrences Weight (TF-IDF)
the 234582 2172.421
said 231350 2395.302
trump 179738 3083.699
would 105027 1231.709
us 101137 1508.095
people 87957 1103.017
one 84484 -
president 82717 1263.974
mr 71979 1084.536
new 70326 1001.078
clinton - 1332.300

Table 2. Occurrences and weights (TF-IDF) of the most common words

The previous numbers were utilized as input for training a Naive Bayes model [2]. The two approaches were tried
both including and not including the title when counting occurrences or calculating weights. It was concluded however
that incorporating the title did not significantly alter the results after training the model.
As we can see from the result in Table 3, using the number of occurrences leads to a better result than assigning weight
to each word, and the overall accuracy 90% is a good result for this simple approach.

Classification Report

Approach TF-IDF Count Occurences

Accuracy Precision F1-Score Accuracy Precision F1-Score

With Title 0.87 0.87 0.87 0.90 0.91 0.90
Without Title 0.87 0.87 0.87 0.90 0.91 0.90

Table 3. Classification Reports and Accuracy Scores

4.4 GloVe

Following the preprocessing of the datasets, a GloVe model [23] was trained based on a document-term matrix created
from the ‘text2vec‘ [12] package in R. The document-term matrix represents the frequency or occurrence of each word
in each document. The GloVe model was trained using the matrix, to create a model that would be used to run the
LSTM algorithm for classifying real and fake news.

4.5 Support Vector Machine Classifier

After loading in the preprocessed dataset, some additional processing was done, such as tokenizing each word in the
‘text‘ column of the data.
Manuscript submitted to ACM
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(a) Scores (b) Accuracy and Loss

Fig. 5. LSTM Performance

The tagger is initialized with a default value of wn.NOUN (noun) from the WordNet corpus in the NLTK library [9].
This means that if the PoS tag is not explicitly specified in the tagger, the default PoS tag assumed will be a noun.

The tagger is then updated with specific mappings for other parts of speech. For example, ’J’ is mapped to wn.ADJ
(adjective), ’V’ is mapped to wn.VERB (verb), and ’R’ is mapped to wn.ADV (adverb). This provides more accurate
lemmatization for these specific parts of speech. The word is then lemmatized using the WordNetLemmatizer() from
the NLTK library. The lemmatization is performed based on the PoS tag, which is obtained from the tagger.

As a result, the SVM [16] model created by this method performed in a subpar manner, and correctly only classified
49.615% of articles correctly.

4.6 LSTM Classifier

The classifier first reads the training set and converts it into a dataframe for further analysis. The columns ‘title‘ and
‘text‘ are concatenated to form a single column with all the string content of the article.

Next, GloVe word embeddings are created from the strings in the articles. The strings are tokenized using ‘Keras‘
[17] and then the tokenized sequences are converted to padded sequences of the same length.

Then, the GloVe model is introduced and converted to a dictionary where each word is mapped to its vector. We
then create a word index dictionary from the tokenizer’s word index[10].

Finally, we build the model using a ‘Sequential‘ model from Keras. It adds an embedding layer initialized with
the GloVe embeddings, followed by an LSTM layer, and two fully connected layers with dropout. The output layer
uses a sigmoid activation function since the problem is binary classification. The model is compiled with the binary
cross-entropy loss function, Adam optimizer, and accuracy as the metric.

We observe that the LSTM classifier with GloVe embeddings works quite well for binary classification of text, with
accuracy of 99.8% and extremely low training loss, as seen in Fig. 4.

4.7 BERT approaches

For BERT-based approaches, the dataset was preprocessed by removing non-alphanumeric characters as well as
stopwords, and the title and text fields were concatenated in a single field.

Two different BERT-based models were used:
Manuscript submitted to ACM
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(1) Distilbert [25] is a smaller, lighter version of BERT, which has 40% less parameters and runs 60% faster while
mantaining 95% of BERT’s performances as measured on the GLUE language understanding benchmark.
The "cased" version (which is case-sensitive) was used with a maximum input length of 32 tokens, reaching an
accuracy of 94.9%. Using the cased model provided better results than the uncased version while increasing
input length did not significantly improve performance.

(2) Albert [18] is also a smaller version of BERT (the base version has 12 million parameters compared to the 108
million of BERT base) which mantains similar performances to BERT in the base version (which is the one used
here) and even outperforms BERT in its xxlarge version, despite having less parameters than BERT large.
For this task we used Albert base version 2, which is uncased, and trained it with a maximum input length of
32 tokens, reaching an accuracy of 93.5%. Also in this case the accuracy did not significantly improve when
increasing the maximum input length.

4.8 GPT2 approach

Similar to the BERT approach, the dataset was preprocessed by removing non-alphanumeric characters and stopwords
and concatenating the title and text field into a single field.

The GPT-2 model [21] is a highly influential language model developed by OpenAI. Despite having a smaller
parameter count compared to other models, GPT-2 has demonstrated impressive performance. The base version of
GPT-2 comprises 117 million parameters, allowing it to excel in various language tasks, including text classification. For
this task, we trained it with a maximum input length of 100 obtaining an accuracy of 93%. Increasing the maximum
length did not yield a significant improvement in accuracy.

4.9 Summary

Finally, we show a summary of all the significant results obtained with the different approaches tried in Table 4.

Method Accuracy Precision Recall F1 score
Stylometry + SVM 0.895 0.917 0.886 0.89

Naive Bayes 0.904 0.905 0.905 0.905
Distilbert 0.949 0.939 0.961 0.95
Albert 0.935 0.974 0.903 0.937
GPT2 0.932 0.937 0.932 0.932

GloVe + LSTM 0.998 0.998 0.998 0.998
Table 4. Summary of obtained results

5 CONCLUSION

The task of detecting fake news varies in complexity, and it is difficult to generalize to all possible news. Even though
our model achieves very good accuracy in predicting fake news, we are far from finding a general solution for news
classification. This is largely due to the ever-rapid changes in language, topics and concepts presented in the news
themselves.

Global events, interests and language will change, and our model may perform poorly trying to classify an article
whose topic, context and language don’t match the information in our dataset. Nonetheless, our study still shows that,
Manuscript submitted to ACM
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with sufficiently large datasets, we can achieve reasonably high accuracy in detecting fake news that is conceptually
similar to the fake news in the dataset.
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